N8§9-21742

1088
NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA

OPTIMIZATION OF LARGE MATRIX CALCULATIONS FOR EXECUTION
ON THE CRAY X-MP VECTOR SUPERCOMPUTER

Prepared by: Dr. William A. Hornfeck
Academic Rank: Professor
University and Department: Mississippi State University
Electrical Engineering
Department
NASA/MSFC
Office: Information Systems
Division: Systems Development
and Implementation
Branch: Engineering Systems
MSFC Colleague: Mr. Bobby C. Hodges
Date: July 29, 1988
Contract No.: NGT 01-002-099

The University of Alabama

XVl

OPTIMIZATION
OF
LARGE MATRIX CALCULATIONS
FOR EXECUTION
ON THE CRAY X-MP
VECTOR SUPERCOMPUTER

by

William A. Hornfeck
Professor of Electrical Engineering
Mississippi State University

ABSTRACT

A considerable volume of large computational computer codes
have been developed for NASA over the past twenty-five
years. This code represents algorithms developed for
machines of an earlier generation. With the emergence of the
vector supercomputer as a viable, commercially available
machine, an opportunity exists to evaluate optimization
strategies to improve the efficiency of existing software.
This result is primarily due to architectural differences in
the latest generation of "large-scale" machines and the
earlier, mostly uniprocessor, machines. This report
describes a software package being used by NASA to perform
computations on large matrices, and describes a strategy for
conversion to the Cray X-MP vector supercomputer.

XVI-i

There were quite a large number of persons at MSFC who
proved to be very capable and quite eager to provide
assistance and motivation during the ten-week course of this
study. Certainly my colleague in this effort, Mr. Bobby C.
Hodges, has my sincere thanks. Thanks also to his fellow
NASA Information System Office personnel John C. Lynn,
Director, Sheila Fogle, Shirley Thompson, Carla Krivutza, and
Joe Pollock. From NASA’'s Structures and Dynamics Laboratory,
I want to thank John Admire and Dave McGhee who loaned their
expertise and computer codes.

I am grateful to a cross-section of NASA Contractor
personnel, all of whom were extremely cooperative: Dale
Robertson and Deborah Hagar of Grumman Data Systems, Larry
Hoelzeman of Cray Research, Karin Offik of New Technology
Inc., and Les Wade of Boeing Computer Support Services.

Ernestine Cothran of the MSFC Director’'s Executive Staff
and Dr. Mike Freeman of the University of Alabama performed
an outstanding service in coordinating and administering all
aspects of the Summer Faculty Program.

XVI-ii

INTRODUCTION

The FORMA (Fortran Matrix Analysis) software package was
developed by Martin-Marietta approximately twenty years ago.
This package has been adapted by NASA for use by the Flight
Dynamics Laboratory at MSFC in solving large structures
response equations:

-w¥M + S¢=-0

Mode

=
(=3
(0]
H
()
2\
I

Mass Matrix

i

M
S = Stiffness Matrix
L

= System Eigenvalues

L(T)=AE'..?:_X-+B£(+ CX + DF(T) + E
dr+ 4T

Where L = Load Matrix

A,...,E = Constant

T = Time

X = Position

F = Forcing Function
and Maximum Dimensions = (12,000 X 12,000)

Typical Matrix Dimensions (500 X 500)

Atypical Matrix Dimensions (5,000 X 5,000)

Original FORMA codes were adapted for execution on the
MSFC UNIVAC 1108 Multiprocessor. These codes have been
"ported" to a next-generation UNIVAC machine, then the IBM
3084, and now the Cray X-MP. Conversions were accomplished
in a minimum of time, but without attention to optimization
strategies regarding the host machines. The Cray is
particularly sensitive to vector constructs within prograns.

XVI-1

Develop and adapt specialized mathematical/engineering
techniques or methodologies to the solution of scientific/
engineering problems utilizing supercomputer technology.
Mathematical analyses and modeling of large computerized
programs will be performed and recommendations for optimizing
the solutions will be formulated. Oral and written reports
will be presented/developed on research activities and
results.

XVI-2

THE _COMPUTING ENVIRONMENT

The Engineering Analysis and Data System (EADS) provides
the Cray user at MSFC with a front-end to the supercomputer
mainframe. Jobs submitted to the Cray are submitted through
EADS. Figure 1 shows the system configuration for EADS.

The portion of EADS which is important to Cray/FORMA
users is shown in Figure 2. Also included as part of this
figure are the three general areas of concern in optimization
studies for codes executing on the Cray.

XVI-3

WHLSAS SAvd

e

‘T HYNODIA

‘8’0 0Te
oseNn

80 sL
A3AVHS

o >
AVO* w m
Z2—dS* Z—d34= S
L—dS L—~d3d= < D
S310SNOD oo
JOdINOD ~ o
=)
=0
Ga
[T TH
[e-1-1, 1
dLO AMIS
sn o1d
Ol sna 3ILon3N L—
zZeLr Oa8 enig §10d
L 3O9VNI L# |2# e
£09+°9Q74a o 3w o |
ovLY .on.il.._mwnm d.mo_oll 3d
s asa
8 3Ird N3N s n
4 sna ILONIN 4 4 wd
Zig¥ 'oqla a QIIN
n 3]
° 4 89 s’z
o 475 300 rom § G) e
oier ‘oq1a INma ["55300ud lw
¥—€ 3rd N3 (\EM]L as
3owni _ vd
6% o sna Slonaa 3ovd

AYM3ILYD

NOILVHNOIANOD W3ILSAS

sav3

e e —————

060 nal
L

‘SS300ud
1MOddNS |

d3d
a3aq

890 G°¢

-)

asva

AIdX Tt D4SN

?unun:onv@xz:x...nrsugo&nng«
TENNVHOUdAH ABNNYHOMBAH

a9 261

asva

d3d

X
t80C Nal
Z

34

89 0L

)

asvg

—]]

&3d
a3a

L80< nal
1 |

89 0L

asva

udan 0§ MNNAUL ¥) TINNVHOHILAH
(NOS) *MI3N *dNOD INIIOS

ass mn

[4

MNP
dN—X
AVHO
dASH

XVIi-4

INHWNOIIANT YWIOA "¢ JdNDId

'FOVHOLS MSIAd ANY AHOWIN NIVIN AVHO
NIIMLEE FOV1d IMVL LSNIN HOIHM SHIASNVHL VIvA IHL INMTAVIYLS €

‘NOILNO3IX3
WVHOOHdd DNIHNA H34SNvHL AHOW3IN NIVIN HO4 33N IHL 30Nd3Y ¢

‘NdD AVHD ‘H3INIHd
NI SH31S1934 JHYMAHVYH 40 HIGWNN 394V 140 3SN INJIOI443 '} \/—
— gl
NIVIA
WOt
-\@ HOLSSVIN e
0
@ y \@ TYNINY3L
sowiols | | S0 07 Sav3 .
ONINNNY JOVAHIINI HOSS300Hd
(sI1q) («—0—» o1) ONINNNY
SSYIN v d"X AVHO y80¢ Wl WAGO
AVHD

INIFWNOHIANT N3LSAS VINHOL FHL

XVI-5

The FORMA (Fortran Matrix Analysis) software package
consists of the following:

105 MATRIX ANALYSIS SUBPROGRAMS:
0 42 Arithmetic Subprograms
0 45 Matrix Manipulation Subprograms

o 12 I/0 Utility Subprograms

O

6 System Utility Subprograms

The FORMA subroutines are characterized by the
attributes listed here:

0 MODULAR FORTRAN STRUCTURE
The average arithmetic routine is 180 statements

The average matrix manimulation routine is 80
statements

The average I/0 utility routine is 30 statements

The average system utility routine is 10 statements

0 ARITHMETIC STRUCTURE
Matrices as large as 12,000 X 12,000 are processed
by using submatrices of dimension 60 X 60, plus
residues

0 SUBPROGRAM DEPENDENCIES
The average subprogram requires 5 arguments in call

statement. The average subprogram call 3 other
subprograms.

XVI-6

O VECTORIZATION

All vectorization is presently the result of
compiler-generated codes. The average subprogram
contains approximately 2 vector loops set up in this
fashion.

The optimization for vector processing will by very
sensitive to the existing FORMA subprograms; however, the
Cray X-MP architecture is equally important. Figure 3 shows
the basic register configuration for the Cray X-MP. The
references at the conclusion of this report provide detailed
specifications on the architecture and COS operating system.

Of particular importance in the optimization process is
the organization of the 8 64-word vector registers and
associated vector functional units. The peak computing
speeds achievable by the Cray are principally attributable to
sustained vector computations.

The existing FORMA subprograms should be analyzed for
the following optimization factors:

0 Subroutine/function calls

o Loop indices and addressing of arrays
o Order dependencies and recursions

o use of scalars in do loops

o Decision processed

0 Restructuring do loops

o General rules

XvVI-7

Vector Reqister

vector
S: Functional
units

V3 €12 Anor
“ultis,
Agd
i
¥ 5y Vi Floating
I Vvector Mask L St_[Point

/0 5 $: [Functiomal

| Status Untts -
S5 Sk -J
l Prog. clock Int. }

Scalar Registers

MENDRY
Loaica)
Ado
Scalar
Functional
Trchange untts
control yeceor

Control
XA
At
Address Reqisters ector
ength

Myltiol
Asd

Address
Functiona)
units

— == ™ EXECUTION

= }--

INSTRUCTION

BUFFERS

$i REAL-TIME CLOCK $i

c-13058

FIGURE 3. CRAY X-MP/4 BLOCK DIAGRAM

Ay

AX

ORIGINAL PAGE 1S
OF POOR QUALITY

XVI-8

-Each of the optimization factors is now broken down into
a more detailed list of do’s and don’'ts relative to
vectorization:
CHECK GENERAL RULES
0 Avoid double precision;
0 use memory interleaving;
0 Avoid integer divides;
o Use parentheses;
0 Avoid mixed mode expressions.
CHECK SUBROUTINE/FUNCTION CALLS
o Isolate non-vectorizable function CALLS;
o0 Separate D) loops for non-vector functioas;
o Remove (nonrecursive) SUBR CALLs from DO loops;
0 Use statement functions;
0 Convert function CALLs to user vector functioms.

CHECK ORDER DEPENDENCIES-RECURSIONS:

0 Simple subscripts help compiler to recognize
vectorizable loops;

0 Vectorize code on non-recursive loop indices;

0 Recognize order-dependencies--these are recursions
which can be reordered to remove the dependence
on order;

o0 Truly recursive operations should be placed in
separate DO loops;

0 Optimize when vectorize is not possible.

XVI-9

CHECK DECISION PROCESSES:

o

o)

Remove loop-independent IF statements from DO loop;

Remove IF tests on loop indices and adjust loop bounds
accordingly;

Create separate loops for "low-probability" decision
statements involving loop indices;

Use temporary variable outside DO loop range for
"low-probability: decision statements;

Avoid the computed GOTO;
IF-THEN-ELSE is not vectorizable;

Restructure conditional statements according to
"density of the decision process"”;

Perform both halves of condition and then select
proper results (mask undesirable ones);.

CHECK RESTRUCTURING DO LOOPS:

(@)

Even if additional calculations required, remove
scalar statements from DO loops;

Use vector length of 64 whenever possible;
Make longer loops the innermost loops;

If possible, convert nested DO loops into a single DO
loop;

Always combine DO loops of equal length;
"Unroll: small outer loops;

"Expand" small inner loops.

XVI-10

' CHECK THE USE OF SCALARS IN DO LOOPS:

(o)

o

Check reduction functions, which result in scalars;
use MIN, MAX, IMIN, IMAX functions;

Check dot products, which result in scalars;

Use the SDOT functions;

Check matrix multiplication, whihc results in a
reduction from 2 matrices to a single matrix;

Use matrix multiplication kernel which llows maximum
vectorization (see example);

Convert scalar recursions to vector arrays;

Do not use loop indices in loop calculations.

CHECK LOOP INDICES AND ADDRESSING OF ARRAYS:

(o)

o °

Check indirect addressing;

Avoid use of indirect addressing in generating more
compact codes;

Use GATHER/SCATTER functions;
Sparse matrices are exception;

Vhenever possible, repeated indices should have
constant "stride";

No complicated expressions for loop indices;

Repeated memory references which differ by 8 or 16
locations can cause memory bank conflicts.

XVI-11

OPTIMIZATION STRATEGIES

There are several approaches to accomplishing the
conversion of existing, non-vectorized computer codes to
obtain more efficient Cray X-MP programs. In this section, a
short-term strategy will be suggested and an example analysis
will be discussed. 1In addition, a long-term conversion
strategy will be outlined, along with a general optimization
procedure.

Figure 4 is a flowchart of a short-term optimization
procedure which addresses the conversion of more critical
subprograms on a priority basis. This flowchart is specific
to the FORMA software package, and when the procedure is
followed for a typical job stream, we obtain the following
results:

1. FORMA routines have been classified one time (this
step not part of a loop) and documented, noting
several key parameters and briefly describing
function.

2. Typical job stream obtained from System Response
Branch (ED22). This program calculates a response
matrix and requires approximately 25 CPU-SEC to
execute.

3. Flow trace utility provides the following

statistics:
Subprogram % Subprogram
_Name Run-Time _Function _
RESPONS 2.33 Main Program
NTRANT 7.73 I/0 Utility
NTRANR 11.00 I/0 Utility
ZRDISK 3.78 I/0 Utility
Z¥DISK 1.80 I/0 Utility
ZMULX1 35.63 (2] = (Al * [B] + [2]
ZMULT 28.60 (2] = [A] * [B]
ZMAXMN 2.52 P max = max [R]
2
SOLVEQ 1.86 ad X +B§i+cx=o
a7 - T
OTHER 4.75 36 other subprograms

XVI-12

OPTIMIZATION STRATEGY
(SHORT TERM)

1. CLASSIFY & DOCUMENT
FORMA
ROUTINES

!

2. OBTAIN
TYPICAL JOB STREAM

3. ISOLATE HIGH RUN-TIME
PERCENTAGE SUBPROGRAMS

gl

4. APPLY
OPTIMIZATION TECHNIQUES
TO
SELECTED SUBPROGRAM

FIGURE 4. SHORT~TERM OPTIMIZATION STRATEGY
XVI-13

10

ZMULX1, ZMULT Optimization:

Since these are similar routines, optimization
methods will be similar;

Restructure vector loops: one in each;

Isolate subroutine calls, especially I/O;

Use of scalars in DO loops;

Vectorize decision processes, if appropriate;
General rules.

We shall treat the discussion of block number 5 in
the optimization strategy by showing a typical
analysis process involving matrix multiplication.
First, consider the "normal" matrix multiplication

program segment:

Do 10 I= 1,N
DO 10 J=1,N

A (1,3) = 0.0
DO 10 K= 1,N
A (I,d) = A(1,J) + B(I,K) * C (K,J)

Then consider a "better multiply kernel which allows the
Cray compiler to set up more efficient vector calculations:

10

DO 8 J=1,N
DO 9 I=1,N
A (I,J)=0.0
CONTINUE

DO 10 Kk-=1,N
DO 10 J=1,N

DO 10 1I=1,N
A(I,3)=A(I,d) + B(I,K) * C(X,d)
CONTINUE

Notice that the vectorized code is not as compact, but
it allows the Cray to perform two vector calculations at the
innermost loop of both nested-DO’s.

Figures 5 and 6 show the ZMULT and ZMULX1l routines which
were found to be the highest-run-time subprograms in our
typical run stream. The reader should compare the DO loop
structure discussed above with these figures.

XVI-14

NS AT
o FoUR DLRLT
le SUBRDUTVINE 7TMULXL(NMSA,NMSH ¢NMSZ)
2. DOUBLE PRECISION SAySBySZ e S
3. DATA KRCPRT/60/
LX) COMMON 7CZ1I7 INDATZ204),y INDRPATZOU Ty HHATIU T 9 SATOUP OU S
Se COMMON /LZ2/ xNDn(204),INDRPB(200).MHB(lo).sn(éo,eo)
be - T T COMMON /LZ3/ INDZ(zoz)‘INDRPZTZUUT‘NRZ(IUT‘SZ
C
T T € THIS IS A SPECIAL MULTIPLIcATIUN“SUBRUUTINE‘UE!IUNEU‘TU‘UE‘USED ‘‘‘‘
C BY ITRAE. IT PERFORMS THE OPERATION:
o (ATI(BY + () = (2]
C THIS ROUTINE ALLOWS THE NUMBER OF ROWS IN (B) TO BE LESS
T T "€ T YHAN THE NUMBER OF COLUMNS IN (AJ.
C CALLS FORMA SUBROUTINES: CHKZERpDZEROleEGINyZCLEANleEDI,ZREDRv
"""" - (v T - ZWRT T ZWRTR y ZZDUMDB.
C DEVELOPED BY JOHN ADMIRE. MAY 1981.
U CAST REVISTUON BY JURN ADMIRE. — JAN 198%+ (LEWIS CRAYY
C IMPLEMENTED ON IBM 3084 BY DAVID S« MCGHEE« MARCH 1986+
- - RNLED DN A
o SUKROUTINE ARGUMENTS (ALL INPUT)
- TTTTTTTT T T T LTTUNMS AT ST PARTITIONSLOGIC IDENT FOR MATRIX (A)S
C NMSB - PARTITION-LOGIC IDENT FOR MATRIX (B)e
T NMSZ = PARTITIUON-LUGIU IUENT FUR RATRIX (Li.
c
C “NERRDREXPUANTIDN
€ 1 = NUMBER OF COLUMNS IN (A) LESS THAN NUMBER OF Rous IN (B).
| o Z T NUMBER UF ROWS T
C 3 = NUMBER OF COLUMNS IN (B) NOT EQUAL TO NUMBER OF:COLUMNS IN (7).
| 3
Te CALL ZBEGIN(NMSA.NRA.NCA.NRPA,NCPA.NRLA.NCLA.INDAyHHA)
8% CALL ZBEGIN(NMSByNRByNCByNRPByNCPByNRLBTNCLByINDBTM
Fe CALL ZBEGIN(NMSZ-NRZyNCZyNRPZvNCPZ:NRLZ:NCLZ,INDZ.HHZ)
17 NERROR=1
11. IF(NCA «LTe NRB) GO TO 999 ,
1l NEKRKUK=Z
13. IF(NRA «NEe. NRZ) GO TO 999
155 NERROR=3" <~
15. IF(NCB «NEs NCZ) GO TO 999
16+ T T IEessssessseease T DO IS0 IRPA=TyNRPA
17 H NRS A=KRCPRT
IT% 4 TFUIRPA FEQe NRPAY NRSATNRLCA
19. : CALL ZREDI(INDRPA,200,INDACIRPA))
20 3 CALU ZREDICINDRPZy20U 3 INDZCIRPA))
21. I R DO 140 JCPB=1,NCPR
b St S ~TTTTTNCSB=KRCPRT —
23. s @ IF(JCPB «EQs NCPB) NCSB=NCLB
ri . > ITFUINDRPFZIVIOCPR Y ~CE« OFY GU TU IOV
25 s 2 CALL ZREDR(SZsKRCPRTOKRCPRT¢INDRPZ(JICPB))
26%" T GO TO 110
27. s 3 10 CALL DZER(Q(SZyNRSA9¢NCSByKRCPRT)
28V - 1 T TI0 T CONTINUE
29. $ I feemeeeee—ea DO 130 IRPB=1,NRPB
IJe - R4 4 RULOATRRLYRT
3l. T s 2 IF(IRPB +£Qs NRPB) NCSA=NRLB
32+ T IFCINDRPACIRPB) LET OGO TO 130
33. s 3 e CALL ZREDI(INDRPB,200yINDB(IRPB)) :
3% I S S— IFCINDRPBCICPB) S LET UV G0—TO 130 P
35. T 2 3 CALL ZREDR(SAyKRCPRTOKRCPRTINDRPACIRPB)) Vs
30 L] . » CALU IREURTISGyRKRUPRTOPRKRUPR Ty INURPBLITPEBYY i
37. P2 ! feecemano DO 120 I=14NRSA B -
ELD) T T i====< DO 120 J=I,NC3B N ;
39. $ 3 T : 2 Rp~ DO 120 L=1,NCSA A
%0+ Tt T t==t==Kp~ 120 SITIyIT=SZUIvJT¥SATTICISSBULsJ)
LX1 NOVECTOR ~ REPLACED BY CALL TO *s$SDOT? aooooocoooooo¢oaoooooeoo¢¢oowoooqooo P=0005065C
41. HE I R T30 TONTINUE ~ "*
42+ HE CALL CHKZERUSZyNRSAyNCSByIFZERDyKRCPRT) ‘
%3 R IF(IFZERD WLEY 0 VANDZ IRDRPZUJICPBY +GV+ UF
] S INDRPZ(JCPB)=-INDRPZ(JCPB)
4%, LI TFUTFLERY SGTS OF
- EE o @CALL ZWRTR(SZ4+KRCPRT®KRCPRTyINDRPZ(JCPB))
45. b E e E Lt o 1497 CONTINUE ~
46 R ntatatotan === 150 CALL ZWRTI(INDRPZ,200,INDZ(IRPA))
47 T T CALL ZCLEAN(NMSZ,INDZ7MHZ)
48. RETUIN
g:. 969 TALL ZZEUMBUY ZMULXT Yy NERRORY
Q. END

"ONE LINE DO LOOP REPLACED AT SEQ. NO.

201D

FIGURE 5. ZMULX1 SOURCE CODE

XVI-15

1.

SUBROUTINE IMULT (NMSAyNMSB(NMSZ)

2. DOUBLE PRECISICN SAySBySZySeSS T -
3. COMMON /LLY/ INDA(ZO4)'INDRPA(ZOO),HHA(IO)'SA(60o60)
LX) ~TDOMROUN 7TZ27 INDBUZ20%)y INDRPBUZOU) yMAB{IU) »5B8{50y 50
Se COMMON /LZ3/ INDZ(204)yINDRPZ(200)yMHZ(10)4SZ(60460)
6. T oo DIMENSTION X{40760)
Te DATA KRCPRY/60/
C Eataas B
C MATRIX MULTIPLICATION FOR PARTITION-LOGICe (A) © (B) = (Z)e
T TAUTS FIRME SUSRUCUTINES UAKIERyZBEGIN, LULEANy ZOPENyZREDTy
c IREDRy IWRTY9ZWRTR¢ZZBOMB.
TToTmmmmme e “C DEVELGQPED BY RL WORLEN. AUGUST 1377.
C LAST REVISION BY JOHN ADMIRE. FEB 1982.
C TMPLEMENTED DN IBM 3084 BY DAVID S+ MCGHEEe MARCUH 1986
c
T SUBRUUTINE ARGUMENTS C(ACL INPUTY
C NMSA = PARTITION-LOGIC NAME FOR MATRIX (A)e
e €T NMS8 = PARTIYION=UOGIT NANE FOR MATKIX (BJ.
C NMSL = PARTITION-LOGIC NAME FOR MATRIX (Z)e.
- — e i TmInl
C NERRNR EXPLANATION
T 1 £ MXTTITES (&)Y AND (B) ARE NUOT CUOMPATIBUE STZE.
c
rmm T mmm T e C RTAD MATRIX (A) HEADERS
3. . CALL ZPEGIN(NMSAyNRAPNCAyNRPASNCPAJNRLA¢NCLA9INDAMHA)
. B - - c pRSAa
C READL *IATRIX (8) HEADER.
e ST T U CAL U IBEG INUNMSBYNREy NCB s NRPBy NCP By NREBYNL LTy LRUG yMMRG 7
c
TrmeTe——Tmem o ms E L CHECK (A) AND (B) MATRICESTFOR SIZETCOMPATIBILITYS
1. NERROR=!
11. T T T i IF (NCA «NEs NRB) GDTO 999
c
C " FORM MATRYX {ZY HEADER.
12, NRZ=NRA
I3V T T T UNCIZ=HNCB -
14. CALL ZDPEN(NMSZ.NRZ,NCZ.NRPZ.NCPZ.NRLZ.NCLZ'INDZ,HHZ)
. — ——
C MULTIPLY MATRICES (A) AND (B).
—IS5% MEEET L LS EEESS DO 29 IRPATIZNRPX
16 H NRS A=KRCPRT
17 T T T IR (IRP A S EQY NRPAY T NRSAENRTA
19. H CALL ZREDICINDRPA,200,INDACIRPA))
19 T T T e e T CALL " ZREDT (CINDRPZ 2005 INDZCIRPAYY
20. ! leemceecrece——— DO 25 JCPB=14NCPB
21 . 4 NLUSH=KRLUPKRA
22« - IF(JCPB +EQe NCPB) NCSB=NCLB
23. - : - CALL ZREDRUSIVKRCPRTYRRCPRTy INDRPZUICPBY)
24 FI IFSZ=0
25. TyTTITUTImsSSwswE=LSC O C D024 JCPA=IZNCPA
25, [S NCSA=KRCPRT
Ll H H 4 IFCICP AR <t Qe NCPAT NLOAZNLTA
29. H : H IF(INDRPA(JCPA) «LEe O) GO TO 24
Rra s 3 - CALL ZREDICINDRP 852007 INDB(ICPA)Y
30. : H b IF CINDRPB(JCPB) «LEe 0) GO YO 24
31% T “IFSI=1-
32. : s e CALL ZIREDR(SAyKRCPRT®KRCPRT9INDRPAUJICPA)}
335 L B S AR CILE’LKLUK()B,KKLPKIVRKLPKIleUKPBtJLPB)) ” T
S S C
3% T ¢ TF(NRSA.NE.RRCPRT +0Re NCSA.NE.KRCPRT mr::mmmnm
35. s 3 DD 5000 J=1,)NCSB
35« T T Y DU 5000 K=IyNCSA
37. [T S DO 5000 I=1,NRSA
33 : H H H H “"‘hﬂ""“‘““KI(I_UW—SITIpJ)*SA(IfK)°SB(K'J)
39. : : : t=~=$~~V-= 5000 CONTINUE
G0 I TUTELSE T T T
41 F I S CALL MXM{SAKRCPRTySB+KRCPRTy Xy KRCPRT)
T 42 HE H Tm———— DO 5010 J=1,NCSB
63, T T 2 T V-- DO 5010 I=1,NRSA
G4 . T ¢ 3 SV o I TSICIY NIESIIT Ly IIFXLT« 1)
45, - S $=~V-- 5010 CONTYINUE
b TTTETTEST T T T T T TENDOCTIF T T T -
- C
7. H H HEE e e 24 TONTTINUE
4R Tl IFCIFST «EQs 7)Y GO TO 26
- P TTCALU CHKZER({S T NRSAyNUSBy IFZERDKRCPRTY
50. H IF(IFLER0O +EQe. 0) GO TO 26
514 B S S “CALL "ZWRTR{SZyKRCPRTHKRUPRTy INDRPZTITPBYY
82 H lemr v 26 CONTTNUE
H T
53. HE e e Saideded 29 CALL ZWRTI(INDRPZy2004INDZCIRPA))
54 T T o © CALL ZCLEAN(NMSZIZINDZYMAZY
c
5% RETUIN - -
c
FIGURE 6. ZMULT SOURCE CODE ORIGINAL PAGE |

OF P
XVI-16 OOR QUALITY

The reader should also note that the Cray compiler has
provided printout information showing all program loops,
which are very important in the vectorization process. The
compiler also marks each loop to inform the user of the
vectorization which can be obtained, i.e., fully vectorized,
conditionally vectorized, short vector loop, or a vector loop
replaced by a subroutine call.

In examining Figures 5 and 6, it should be noted that,
even for highly modular programs, the application of all
vectorization rules which have been pointed out is a very
tedious process. The vectorizing compiler provided by Cray,
CFT or CFT77, performs well in finding vector constructs;
however, it cannot perform as well as the vector programmer
who carefully examines and optimizes codes to fully exploit
the X-MP architecture. The following estimates conclude this
example by calculating overall run-time improvement for
RESPONS if the stated levels of improvement are achieved for
subprograms:

Estimate 25% improvement in ZMULX1
Estimate 25% improvement in ZMULT

Estimate 15% improvement in the other six

predominant subroutines
This yields and estimated overall improvement of
(0.25) (0.64) + (0.15) (0.29) -~ 0.20,

or 20% improvement in a typical run stream.

Figure 7 shows a long-term strategy which could be
employed if a complete conversion to vectorized code is
justifiable for the FORMA package. This flow chart
represents a procedure which would be a greater expense and
requires more time, but which would yield a thorough redesign
of the software.

A general optimization strategy is shown by the flow
chart of Figure 8. This procedure is independent of the
specific software package under consideration. Note that the
procedure would require the implmentation of general purpose
test and data generation programs to thoroughly test
vectorization strategies.

XVI-1%

OPTIMIZATION STRATEGY
(LONG TERM)

1. CLASSIFY & DOCUMENT
FORMA
ROUTINES

'

2. WRITE
GENERAL-PURPOSE MAIN
PROGRAM

l

3. GENERATE
DATA FILES FOR VARIOUS
MATRIX TYPES

g

4. SELECT
TARGET SUBPROGRAM

'

5. OPTIMIZE
SELECTED SUBPROGRAM
UNDER CFT77

105
SUBPROGRAM

OPTIMIZED

6. PUBLISH BASELINE
FORMA
PACKAGE

|

FIGURE 7. LONG-TERM STRATEGY
XVI-18

A GENERAL
OPTIMIZATION STRATEGY

GOFTWARE PACKAGE TO BE CONVERTED/OPTIMIZEDJ
CLASSIFY & DOCUMENT
SUBPROGRAMS

'

WRITE GENERAL-PURPOSE
MAIN TEST PROGRAM

l

WRITE GENERAL-PURPSE
DATA GENERATION PROGRAM

f

SELECT TARGET
SUBPROGRAM

l

OPTIMIZE TARGET SUBPROGRAM
USING APPROPRIATE METHODOLOGIES

ALL

SUBPROGRAMS
OPTIMIZED

YES

DOCUMENT

FIGURE 8. GENERAL STRATEGY
XVI-19

Optimization of computer programs to achieve highly
vectorized codes is a very exacting and time-consuming
process. It is very much labor-intensive and it requires
highly skilled personnel. On the other hand, these are
rather costly attributes that must be balanced against the
fact that software such as the FORMA routines are long-term
investments. There are high initial costs associated with
the optimization process, but there are long-term advantages
to reducing CPU-minutes for frequently used programs.

The FORMA software package would be an excellent
candidate for long-term optimization procedures. If this is
done, several key areas would need to be addressed. These
are:

o} The CFT77 compiler should be used in generating
object code. In doing this, complied codes should
be compared with previous compilations to ensure the
integrity of the compile process.

o} I/0 utility routines are not particularly good
candidates for optimization. However, these are
frequently used routines and unique I/0 speed-up
features on the Cray should be investigated. These
would include BUFFER IN/BUFFER OUT and unformatted
I/0.

o Custom performance monitoring routines should be
implemented. These could provide users with a means
to easily monitor performance enhancements and to
monitor any difference in results obtained.

o The optimization techniques which are effective tend
to be reusable; that is, once learned or recognized,
the same techniques can generally be applied a
number of times in a given software package.
Therefore, the more effective vectorization
techniques should be well documented, including
applicable performance statistics.

XVI-20

The Cray X-MP at NASA/MSFC represents a significant
investment in high-performance computing technology. As
such, resources to support this machine are critical. Those
personnel writing new programs for the Cray X-MP should be
well-versed in good vectorization techniques. In addition,
permanent staff with in-depth knowledge of vectorization
tools and techniques is important to the effective use of the
present machine, as well as future upgrades and
next-generation machines.

XVI-21

FORTRAN Programming on Cray Computers, Student Workbook,
Pacific-Sierra Corp.

Cray X-MP and Cray-1 Computer Systems, Programmer’'s Library
Reference Manual, Cray Research, Inc., 198%.

Cray X-MP and Cray-1 Computer Systems, FORTRAN (CFT)
Reference Manual, Cray Research, Inc., 1986.

EADS User's Guide, Grumman Data Systems, Doc. No. GDS-MSFC-
001, 1987.

Cray X-MP and Cray-1 Computer Systems COS Version 1 Reference

Manual and COS Version 1 Ready Reference Manual, Cray
Research, Inc., 1987.

Computer Architecture and Parallel Processing, Hwang and .
Briggs, McGraw-Hill, 1986.

"Modal Analysis of Structures by an Iterative Rayleigh - Ritz
Technique", NASA TM X-64528, 1970.

XVI-22

